Что такое эквивалентная шероховатость
Большая Энциклопедия Нефти и Газа
Эквивалентная шероховатость
Эквивалентная шероховатость в зависимости от диаметра трубы по-разному сказывается на величине гидравлических сопроти-лений. [5]
Эквивалентная шероховатость не может быть непосредственно измерена и определяется путем точных гидравлических испытаний. [6]
Эквивалентная шероховатость может быть определена из табл. 4.2 [ 96, с. [8]
Эквивалентная шероховатость зависит от материала ( металла, бетона и др.) трубопровода и его состояния. [9]
Эквивалентная шероховатость введена для характеристики шероховатости реальных труб, у которых высота отдельных шероховатостей неравномерна. [10]
Эквивалентная шероховатость & э учитывает не только среднюю высоту выступов, но также их форму, расположение в плане и пр. [12]
Количественно эквивалентная шероховатость в формуле Альтшуля характеризует суммарное влияние состояния внутренней поверхности стенки трубопровода на коэффициент гидравлического сопротивления. [13]
Эквивалентная шероховатость образцов в первоначальный период коррозионного разрушения поверхностного слоя заметно снижается. Под действием малых электрических токов, возникающих на поверхности металла в результате взаимодействия с ним электролита, происходит разрушение выступов шероховатостей. Как на выступах, так и на впадинах имеют место и аноды и катоды. Но на выступах поляризация катодных поверхностей быстро устраняется создаваемой потоком деполяризацией. В то же время действие коррозионных элементов во впадинах будет сильно замедляться иенарушаемой поляризацией с накоплением в этих впадинах продуктов коррозии. [14]
эквивалентная шероховатость
3.4.3 эквивалентная шероховатость: Шероховатость, равная равномерной песочной шероховатости, по значению которой вычисляют такой же коэффициент гидравлического сопротивления, как и для фактической шероховатости.
Полезное
Смотреть что такое «эквивалентная шероховатость» в других словарях:
ГОСТ 8.586.1-2005: Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода измерений и общие требования — Терминология ГОСТ 8.586.1 2005: Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода измерений и общие требования оригинал… … Словарь-справочник терминов нормативно-технической документации
ДАРСИ — ВЕЙСБАХА ФОРМУЛА — (в гидравлике), определяет величину потерь напора на трение при движении жидкости в трубах: hv=(ll/d)(v2/2g), где l коэфф. гидравлич. трения, l и d длина и диаметр трубы, ч ср. скорость течения жидкости, g ускорение свободного падения. Коэфф. l… … Физическая энциклопедия
общий КПД (КПД агрегата) ηgr(ar) — 3.1.35 общий КПД (КПД агрегата) ηgr(ar) : Отношение мощности, отдаваемой насосом жидкости, к мощности, потребляемой приводом насоса: (3.17) 3.1.36 высота самовсасывания: Высота самозаполнения подводящего трубопровода самовсасывающим насосом… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 6134-2007: Насосы динамические. Методы испытаний — Терминология ГОСТ 6134 2007: Насосы динамические. Методы испытаний оригинал документа: 3.1.29 NPSH3 (критический кавитационный запас Dhкр): NPSH для 3 % падения полного напора первой ступени насоса как стандартное основание для использования при… … Словарь-справочник терминов нормативно-технической документации
комнатная температура — 3.84 комнатная температура: Температура до 50 °С. Источник: ГОСТ Р 51365 99: Оборудование нефтепромысловое добычное устьевое. Общие технические условия … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 54786-2011: Крепежные изделия для разъемных соединений атомных энергетических установок. Технические условия — Терминология ГОСТ Р 54786 2011: Крепежные изделия для разъемных соединений атомных энергетических установок. Технические условия оригинал документа: 3.7 виток резьбы: Часть выступа резьбы, соответствующая одному полному обороту точек винтовой… … Словарь-справочник терминов нормативно-технической документации
РД 08.00-60.30.00-КТН-046-1-05: Неразрушающий контроль сварных соединений при строительстве и ремонте магистральных нефтепроводов — Терминология РД 08.00 60.30.00 КТН 046 1 05: Неразрушающий контроль сварных соединений при строительстве и ремонте магистральных нефтепроводов: 1.4.15 Бригада сварщиков группа аттестованных в установленном порядке сварщиков, назначенных… … Словарь-справочник терминов нормативно-технической документации
Шероховатость стенок трубопровода: типы и влияние
Твердые стенки, ограничивающие поток жидкости, всегда в той или иной степени обладают известной шероховатостью. Шероховатость стенок характеризуется величиной и формой различных, порой самых незначительных по размерам, выступов и неровностей, имеющихся на стенках, и зависит от материала стенок и их обработки.
Шероховатость — это совокупность неровностей поверхности с относительно малыми шагами на базовой длине. Измеряется в микрометрах (мкм).
Содержание статьи
Обычно с течением времени шероховатость изменяется от появления ржавчины, коррозии, отложения осадков и т.д.
Абсолютная шероховатость
В качестве основной характеристики шероховатости служит так называемая абсолютная шероховатость – κ, представляющая собой среднюю величину указанных выступов и неровностей, измеренную в линейных единицах.
Некоторые значения шероховатости стенок трубопровода приведены в таблице ниже
Чистые цельнотянутые из латуни, меди и свинца
Новые цельнотянутые стальные
Стальные с незначительной коррозией
В случае когда величина выступов шероховатости стенки трубы меньше, чем толщина вязкого (ламинарного) подслоя неровности стенки полностью погружены в этот слой.
При этом турбулентная часть потока не будет входить в непосредственное соприкосновение со стенками и движение жидкости, а следовательно, и потери энергии не будут зависеть от шероховатости стенок, а будут зависеть только от свойств самой жидкости.
Если величина выступов такова, что они превышают толщину вязкого подслоя, то неровности стенок будут выступать в турбулентную область, увеличивая беспорядочность движения и существенным образом влиять на величину потерь энергии.
В этом случае каждый отдельный выступ можно сравнить с плохо обтекаемой поверхностью, находящейся в окружающем её потоке жидкости и являющейся источников образования вихрей.
В соответствии с написанным выше поверхности условно разделяют на гидравлически гладкие (первый случай) и шероховатые (второй вариант).
На самом деле, толщина вязкого подслоя непостоянна и уменьшается с увеличением числа Рейнольдса. У гидравлически гладких стенок с возрастанием числа Рейнольдса тоже начинает проявляться шероховатость, так как вязкий подслой становиться тоньше и выступы шероховатости, которые первоначально полностью располагались в этом слое, начинают выходить из него, выступая в турбулентную зону.
Следовательно, одна и та же стенка в зависимости от величины числа Рейнольдса может вести себя по разному:
в одном случае – как гладкая
в другом – как шероховатая.
Поэтому абсолютная шероховатость стенок трубопровода не может полностью характеризовать влияние стенок на движение жидкости. Естественно, что стенки с одной и той же абсолютной шероховатостью в потоках небольших поперечных размеров должны будут вносить большие возмущения в поток жидкости и оказывать большее сопротивление движению, чем в потоках большого сечения.
Относительная шероховатость и относительная гладкость.
Для характеристики влияния шероховатости на величину гидравлических сопротивлений, а так же исходя из условий соблюдения подобия, в гидравлике вводится понятие относительная шероховатость – ε.
Под термином относительная шероховатость понимают безразмерное отношение абсолютной шероховатости к некоторому линейному размеру, характеризующему сечение потока(например, к радиусу трубы r, к глубине жидкости в открытом потоке h и т.п.).
В некоторых случаях вводят понятие относительной гладкости ε / как величины обратной относительной шероховатости
В действительно, как показали исследования, на величину гидравлических сопротивлений влияет не только абсолютное значение шероховатости (высота выступов), но также в значительной степени их форма и густота. Учесть влияние этих факторов непосредственными измерениями шероховатости практически невозможно.
Видео о шероховатости
В настоящее время для того, чтобы охарактеризовать шероховатость стенки трубы при гидравлических расчетах обычно пользуются понятием – эквивалентной шероховатости. Этот эквивалент представляет собой такую величину выступов однородной абсолютной шероховатости, которая дает при подсчетах одинаковую с действительной шероховатостью величину потерь напора.
Что такое эквивалентная шероховатость стенок трубы
Большая Энциклопедия Нефти и Газа
Эквивалентная шероховатость
Эквивалентная шероховатость — такая условная, постоянная по длине трубы шероховатость, образованная выступами одинаковой высоты еа, при которой потери энергии потока на трение будут теми же самыми, что и при данной реальной шероховатости с выступами различной величины. [1]
Эквивалентная шероховатость — это искусственная равномерная зернистая шероховатость с такой высотой ( диаметром) зерен ( Дэ rf3), при которой в области квадратичного сопротивления ( где Л зависит только от шероховатости и не зависит от Re) значение коэффициента К равно его значению при естественной шероховатости. [2]
Эквивалентная шероховатость — это воображаемая равномерная зернистая шероховатость с такой высотой ( диаметром) зерен ( Да d3), при которой в области квадратичного сопротивления ( где X зависит только от шероховатости и не зависит от Re) значение коэффициента А равно его значению при естественной шероховатости. [3]
Эквивалентная шероховатость в зависимости от диаметра трубы по-разному сказывается на величине гидравлических сопроти-лений. [5]
Эквивалентная шероховатость не может быть непосредственно измерена и определяется путем точных гидравлических испытаний. [6]
Эквивалентная шероховатость может быть определена из табл. 4.2 [ 96, с. [8]
Эквивалентная шероховатость зависит от материала ( металла, бетона и др.) трубопровода и его состояния. [9]
Эквивалентная шероховатость введена для характеристики шероховатости реальных труб, у которых высота отдельных шероховатостей неравномерна. [10]
Эквивалентная шероховатость определяется путем испытания данной трубы в области квадратичного сопротивления и вычисления А по опытному значению А из формулы ( 2 — 23), которая получена в результате исследования труб с искусственно созданной зернистой шероховатостью. [11]
Эквивалентная шероховатость & э учитывает не только среднюю высоту выступов, но также их форму, расположение в плане и пр. [12]
Количественно эквивалентная шероховатость в формуле Альтшуля характеризует суммарное влияние состояния внутренней поверхности стенки трубопровода на коэффициент гидравлического сопротивления. [13]
Эквивалентная шероховатость образцов в первоначальный период коррозионного разрушения поверхностного слоя заметно снижается. Под действием малых электрических токов, возникающих на поверхности металла в результате взаимодействия с ним электролита, происходит разрушение выступов шероховатостей. Как на выступах, так и на впадинах имеют место и аноды и катоды. Но на выступах поляризация катодных поверхностей быстро устраняется создаваемой потоком деполяризацией. В то же время действие коррозионных элементов во впадинах будет сильно замедляться иенарушаемой поляризацией с накоплением в этих впадинах продуктов коррозии. [14]
Кэ-абсолютная эквивалентная шероховатость поверхности воздуховода из листовой стали, равная 0 1 мм; d — диаметр воздуховода, мм; Re-число Рей-нольдса. [15]
Абсолютная, эквивалентная и относительная шероховатость. Гидравлически гладкие и гидравлически шероховатые трубы.
Трубы из латуни, свинца, меди | 0,000 ¸ 0,002 |
Стальные высококачественные бесшовные трубы | 0,06 ¸ 0,20 |
Стальные трубы | 0,1 ¸ 0,5 |
Чугунные трубы | 0,2 ¸ 1,0 |
Для труб, отличающихся по форме от цилиндрических, вводят понятие гидравлического (эквивалентного) диаметра. Гидравлический диаметр — это диаметр круглой трубы, имеющей площадь поперечного сечения, равную площади трубы иной формы
,
где П — полный смоченный периметр трубы.
Гидравлический диаметр используют в формулах для расчета потерь давления в трубах, форма поперечного сечения которых отличается от круга.
Шероховатость стенок трубопровода: типы и влияние
Твердые стенки, ограничивающие поток жидкости, всегда в той или иной степени обладают известной шероховатостью. Шероховатость стенок характеризуется величиной и формой различных, порой самых незначительных по размерам, выступов и неровностей, имеющихся на стенках, и зависит от материала стенок и их обработки.
Шероховатость — это совокупность неровностей поверхности с относительно малыми шагами на базовой длине. Измеряется в микрометрах (мкм).
Содержание статьи
Обычно с течением времени шероховатость изменяется от появления ржавчины, коррозии, отложения осадков и т.д.
Абсолютная шероховатость
В качестве основной характеристики шероховатости служит так называемая абсолютная шероховатость – κ, представляющая собой среднюю величину указанных выступов и неровностей, измеренную в линейных единицах.
Некоторые значения шероховатости стенок трубопровода приведены в таблице ниже
Чистые цельнотянутые из латуни, меди и свинца
Новые цельнотянутые стальные
Стальные с незначительной коррозией
В случае когда величина выступов шероховатости стенки трубы меньше, чем толщина вязкого (ламинарного) подслоя неровности стенки полностью погружены в этот слой.
При этом турбулентная часть потока не будет входить в непосредственное соприкосновение со стенками и движение жидкости, а следовательно, и потери энергии не будут зависеть от шероховатости стенок, а будут зависеть только от свойств самой жидкости.
Если величина выступов такова, что они превышают толщину вязкого подслоя, то неровности стенок будут выступать в турбулентную область, увеличивая беспорядочность движения и существенным образом влиять на величину потерь энергии.
В этом случае каждый отдельный выступ можно сравнить с плохо обтекаемой поверхностью, находящейся в окружающем её потоке жидкости и являющейся источников образования вихрей.
В соответствии с написанным выше поверхности условно разделяют на гидравлически гладкие (первый случай) и шероховатые (второй вариант).
На самом деле, толщина вязкого подслоя непостоянна и уменьшается с увеличением числа Рейнольдса. У гидравлически гладких стенок с возрастанием числа Рейнольдса тоже начинает проявляться шероховатость, так как вязкий подслой становиться тоньше и выступы шероховатости, которые первоначально полностью располагались в этом слое, начинают выходить из него, выступая в турбулентную зону.
Следовательно, одна и та же стенка в зависимости от величины числа Рейнольдса может вести себя по разному: в одном случае – как гладкая
в другом – как шероховатая.
Поэтому абсолютная шероховатость стенок трубопровода не может полностью характеризовать влияние стенок на движение жидкости. Естественно, что стенки с одной и той же абсолютной шероховатостью в потоках небольших поперечных размеров должны будут вносить большие возмущения в поток жидкости и оказывать большее сопротивление движению, чем в потоках большого сечения.
Относительная шероховатость и относительная гладкость.
Для характеристики влияния шероховатости на величину гидравлических сопротивлений, а так же исходя из условий соблюдения подобия, в гидравлике вводится понятие относительная шероховатость – ε.
Под термином относительная шероховатость понимают безразмерное отношение абсолютной шероховатости к некоторому линейному размеру, характеризующему сечение потока(например, к радиусу трубы r, к глубине жидкости в открытом потоке h и т.п.).
В некоторых случаях вводят понятие относительной гладкости ε / как величины обратной относительной шероховатости
В действительно, как показали исследования, на величину гидравлических сопротивлений влияет не только абсолютное значение шероховатости (высота выступов), но также в значительной степени их форма и густота. Учесть влияние этих факторов непосредственными измерениями шероховатости практически невозможно.
Видео о шероховатости
В настоящее время для того, чтобы охарактеризовать шероховатость стенки трубы при гидравлических расчетах обычно пользуются понятием – эквивалентной шероховатости. Этот эквивалент представляет собой такую величину выступов однородной абсолютной шероховатости, которая дает при подсчетах одинаковую с действительной шероховатостью величину потерь напора.
Что такое эквивалентная шероховатость стенок трубы
Рисунок 434. Шероховатость и зарастание трубопровода
Пропускная способность трубопроводов в период эксплуатации снижается, вследствие коррозии и образования отложений на трубах. При этом происходит изменение шероховатости трубопровода и его зарастание (уменьшение поперечного сечения). Увеличение шероховатости и зарастание приводит к уменьшению диаметра трубопровода и как следствие к увеличению потерь напора. Меньше всего этому явлению подвержены асбоцементные, стеклянные и пластмассовые трубы. Сложность физических, химических и биологических явлений, определяющих изменение шероховатости труб и их зарастание, приводит к необходимости ориентироваться на некоторые средние показатели, которые в первом приближении можно оценить по формуле [5]:
Рисунок 435. (19)
— коэффициент эквивалентной шероховатости для новых труб в начале эксплуатации, мм;
— коэффициент эквивалентной шероховатости через t лет эксплуатации, мм;
— ежегодный прирост абсолютной шероховатости, мм в год, зависящий от физико-химических свойств подаваемой по ним воды.
По А.Г. Камерштейну, природные воды разбиваются на пять групп, каждая из которых определяет характер и интенсивность снижения пропускной способности трубопровода:
Коррозионное
воздействие
Зарастание трубопровода можно измерять при выполнении реконструкции трубопроводов или ежегодных ремонтах при помощи обычной линейки (рисунок выше), а увеличение шероховатости определять по выше изложенной методике.
Значения коэффициента эквивалентной шероховатости для новых труб приведены в таблице ниже.
Тип трубы | Состояние трубы | Коэффициент эквивалентной шероховатости трубы, мм | Среднее значение коэффициента эквивалентной шероховатости трубы, мм |
Бесшовные стальные трубы | Новые и чистые | 0.01 – 0.02 | 0.014 |
Стальные сварные трубы | Новые и чистые | 0.03 – 0.1 | 0.06 |
Чугунные трубы | Новые асфальтированные | 0 – 0.16 | 0.12 |
Чугунные трубы | Новые без покрытия | 0.2 – 0.5 | 0.3 |
Асбестоцементные | Новые | 0.05 – 0.1 | 0.085 |
Железобетонные | Новые виброгидропрессованные | 0 – 0.05 | 0.03 |
Железобетонные | Новые центрифугированные | 0.15 – 0.3 | 0.2 |
Пластмассовые | Новые, технически гладкие | 0 – 0.002 | 0.001 |
Стеклянные | Новые, технически гладкие | 0 – 0.002 | 0.001 |
Алюминиевые | Новые, технически гладкие | 0 – 0.002 | 0.001 |
Общие потери в трубопроводе, с учетом потерь в местных сопротивлениях могут быть определены по формуле:
Что такое относительная и абсолютная шероховатость?
Содержание:
Относительная шероховатость важна, поскольку такая же абсолютная шероховатость более заметно влияет на тонкие трубы, чем на большие.
Очевидно, что шероховатость труб взаимодействует с трением, которое, в свою очередь, снижает скорость, с которой жидкость движется внутри них. В очень длинных трубах жидкость может даже перестать двигаться.
Поэтому очень важно оценить трение при анализе потока, поскольку для поддержания движения необходимо прикладывать давление с помощью насосов. Компенсация потерь требует увеличения мощности насосов, что сказывается на расходах.
Другими источниками потери давления являются вязкость жидкости, диаметр трубы, ее длина, возможные сужения и наличие клапанов, кранов и колен.
Происхождение шероховатости
Внутренняя часть трубы никогда не бывает полностью гладкой и гладкой на микроскопическом уровне. Стены имеют неровности поверхности, которые сильно зависят от материала, из которого они сделаны.
Кроме того, после эксплуатации шероховатость увеличивается из-за накипи и коррозии, вызванной химическими реакциями между материалом трубы и жидкостью. Это увеличение может составлять от 5 до 10 раз больше заводской шероховатости.
Для коммерческих труб значение шероховатости указывается в метрах или футах, хотя, очевидно, они будут действительны для новых и чистых труб, потому что со временем шероховатость изменит свое заводское значение.
Значения шероховатости для некоторых коммерческих материалов
Ниже приведены общепринятые значения абсолютной шероховатости промышленных труб:
— Пластик и стекло: 0,0 м (0,0 фута).
Относительную шероховатость можно оценить, зная диаметр трубы, изготовленной из рассматриваемого материала. Если обозначить абсолютную шероховатость как а также а диаметр как D, относительная шероховатость выражается как:
В приведенном выше уравнении используется цилиндрическая труба, но в противном случае величина, называемая гидравлический радиус, в котором диаметр заменен на четырехкратное значение.
Определение абсолютной шероховатости
Для определения шероховатости труб были предложены различные эмпирические модели, учитывающие геометрические факторы, такие как форма неровностей в стенах и их распределение.
Примерно в 1933 году немецкий инженер Й. Никурадсе, ученик Людвига Прандтля, покрыл трубы песчинками разного размера, известные диаметры которых и являются абсолютной шероховатостью. а также. Никурадзе работал с трубками, для которых значения e / D варьировались от 0,000985 до 0,0333,
В этих хорошо контролируемых экспериментах шероховатости были распределены равномерно, что на практике не происходит. Однако эти значения а также они по-прежнему являются хорошим приближением для оценки влияния шероховатости на потери на трение.
Шероховатость, указанная производителем трубы, фактически эквивалентна шероховатости, созданной искусственно, как это сделали Никурадсе и другие экспериментаторы. По этой причине его иногда называют эквивалентный песок (эквивалент песка).
Ламинарный поток и турбулентный поток
В ламинарном потоке, при котором жидкость движется упорядоченно слоями, неровности на поверхности трубы имеют меньший вес и поэтому обычно не принимаются во внимание. В этом случае именно вязкость жидкости создает напряжения сдвига между слоями, вызывая потери энергии.
Примерами ламинарного потока являются струя воды, выходящая из крана с низкой скоростью, дым, начинающий хлынуть из зажженной ароматической палочки, или начало струи чернил, впрыскиваемой в струю воды, как определено Осборном Рейнольдсом. в 1883 г.
Вместо этого турбулентный поток менее упорядочен и более хаотичен. Это поток, в котором движение нерегулярно и не очень предсказуемо. Примером может служить дым от ароматической палочки, когда он перестает плавно двигаться и начинает образовывать серию нерегулярных струй, называемых турбулентностью.
Безразмерный числовой параметр, называемый числом Рейнольдса Nр указывает, есть ли у жидкости тот или иной режим, по следующим критериям:
Безр 4000 поток турбулентный. Для промежуточных значений режим считается переходным, а движение неустойчивым.
Коэффициент трения
Этот коэффициент позволяет найти потерю энергии из-за трения и зависит только от числа Рейнольдса для ламинарного потока, но в турбулентном потоке присутствует относительная шероховатость.
Вот почему были созданы такие кривые, как диаграмма Муди, которые позволяют легко найти значение коэффициента трения для данного числа Рейнольдса и относительной шероховатости. Опытным путем были получены уравнения, которые действительно имеют F явно, что довольно близко к уравнению Колебрука.
Старение труб
Существует эмпирическая формула для оценки увеличения абсолютной шероховатости в результате использования, зная значение заводской абсолютной шероховатости. а такжеили:
Первоначально вычитается для чугунных труб, но хорошо работает с другими типами труб из металла без покрытия. В них pH жидкости важен с точки зрения ее долговечности, поскольку щелочные воды значительно уменьшают поток.
С другой стороны, трубы с покрытием или пластик, цемент и гладкий бетон не испытывают заметного увеличения шероховатости со временем.