Что такое чрп электродвигателей
Статьи
Тематика: Полезная информация
Частотно регулируемый привод (ЧРП)
Общие сведения
Частотно регулируемым приводом (ЧРП) называют агрегат, осуществляющий бесступенчатое регулирование скорости вращения ротора электродвигателя, путем изменения частоты питающего напряжения. ЧРП включает в себя электродвигатель и преобразователь частоты (ПЧ).
Частотный электропривод используется во многих сферах нашей жизни. Управление электродвигателями, построенное на этом принципе, лежит в основе самых разнообразных устройств, начиная с бытовой техники (стиральные машины, пылесосы), заканчивая крупными технологическими комплексами различных отраслей промышленности.
Компания Овердрайв-Электро предлагает частотоно регулируемые приводы ABB со склада в Минске:
Устройство и принцип действия
Принцип, на основе которого функционирует частотный привод, использует базовое свойство вращающихся электрических машин, выраженное зависимостью параметров электромагнитного поля статора от частоты напряжения. Так, угловая скорость электромагнитного поля статора асинхронного двигателя выражается формулой:
Рис. 1. Схема частотного регулирования
Переменное сетевое напряжение Ucпромышленной частоты fc выпрямляется диодным мостом (В) и после LC – фильтра, сглаживающего пульсации, поступает на вход инвертора (И), который является ключевым узлом всего привода.
Простой Г – образный LC – фильтр представляет собой комбинацию индуктивности (дросселя) и ёмкости (конденсатора), которые включены соответственно последовательно и параллельно нагрузке выпрямителя. Выпрямленное напряжение, кроме постоянной составляющей, содержит также переменную, имеющую вид однонаправленных пульсаций с некоторой амплитудой. Наличие высокочастотных составляющих, обусловленных пульсациями, негативно сказывается на работе электроники, поэтому частотно регулируемые электроприводы (ЧРЭП), как правило, оборудуются фильтрами подобного рода. Работает фильтр следующим образом. Индуктивность, включенная последовательно с нагрузкой, беспрепятственно пропускает постоянную составляющую тока, оказывая ей лишь незначительное активное сопротивление проводов катушки. Переменная же составляющая тока испытывает индуктивное сопротивление дросселя. При этом, в полупериод нарастания тока, дроссель индуцирует ЭДС противоположного направления. В это время происходит намагничивание сердечника, то есть накопление энергии. В этот же полупериод происходит заряд конденсатора фильтра. В полупериоде спада тока, запасенная дросселем энергия высвобождается, препятствуя его уменьшению, а конденсатор разряжается на нагрузку, также поддерживая величину тока. В результате этого происходит значительное сглаживание переменной составляющей.
Инвертор формирует на выходе переменное напряжение с изменяемой частотой и амплитудой. Основу схемы инвертора составляют силовые электронные ключи, функции которых выполняют транзисторы, изготовленные по IGBT – технологии. Для управления ключами используется принцип широтно–импульсной модуляции (ШИМ). Управляющие сигналы формирует система импульсно – фазового управления.
Процесс регулирования привода может осуществляться либо вручную, путем установки задания оператором, либо в автоматическом режиме.
Эффективность применения ЧРП в различных областях
Экономический эффект от применения частотного регулирования хорошо иллюстрируется на примере насосных станций городской системы водоснабжения. Работа данных систем характеризуется необходимостью поддержания определенного давления в водоводе, которое функционально связано с изменяющимся во времени потреблением воды. До появления систем управления, использующих частотный привод, регулирование давления осуществлялось количеством одновременно находящихся в работе насосных агрегатов, а также положением задвижек, то есть, дросселированием.
На рисунке 2 представлен график сравнительного потребления мощности при использовании дросселирования и частотного регулирования.
Рисунок 2. Потребление мощности при использовании дросселирования и частотного регулирования.
Точка пересечения графиков, в которой значения мощности и потока достигают 100%, соответствует полностью открытой задвижке (при регулировании дросселированием) и работе агрегата на полную мощность (при частотном регулировании). В этом режиме применение ЧРП не приносит экономического эффекта. Но при дросселировании, когда задвижка открыта лишь частично, потребляемая электродвигателем мощность в несколько раз больше, чем в варианте с применением частотного регулирования и полностью открытой задвижкой. При этом, разница в потреблении тем больше, чем меньше требуемая производительность агрегата. Это обусловливает существенную экономию электрической энергии при внедрении ЧРП, так как режим ограничения подачи имеет большой удельный вес в графике работы насосов (например, в ночное время при практическом отсутствии потребления).
В некоторых случаях, необходимость плавного регулирования угловой скорости валов механизмов диктуется самой технологией. Например, мощность котлов и энергоблоков тепловых станций регулируется плавным изменением производительности механизмов подачи топлива. На ГРЭС и ТЭЦ, работающих на угле, последний, перед подачей в топку котла, измельчается в мельницах до пылевидного состояния. Подачу угольной пыли в топку выполняет ППЛ (питатель пыли лопастный). Привод этого механизма традиционно осуществляется двигателем постоянного тока с регулируемыми оборотами. Регулирование производится посредством тиристорного блока управления. Электродвигатели постоянного тока имеют целый ряд эксплуатационных недостатков. Они дороги, щеточный механизм этих электрических машин подвержен быстрому износу, весьма чувствителен к загрязнениям и нуждается в периодической регулировке и чистке.
Кроме применения двигателей постоянного тока, функция бесступенчатого регулирования реализуется с помощью механических вариаторов, например, в крупных станочных приводах. Применение механических коробок передач всегда сопровождается существенными потерями, к тому же, такие системы обладают ограниченным диапазоном регулирования.
Использование частотного привода, укомплектованного асинхронным двигателем, имеющим короткозамкнутый ротор, позволяет избавиться от перечисленных недостатков двигателей постоянного тока и механических систем регулирования. Следует особо подчеркнуть, что наибольшую выгоду приносит применение именно электродвигателей с короткозамкнутым ротором. Эти машины наиболее дешевы, конструктивно просты, не имеют щеточного аппарата и могут быть приспособлены для работы в самых тяжелых условиях.
Внедрение систем управления, использующих частотно регулируемый привод, является инновационным мероприятием и, как правило, быстро окупается.
Для консультации или заказа частотно регулируемых приводов воспользуйтесь формой обратной связи на странице контактов.
Для чего нужен частотный преобразователь
Для чего нужен частотный преобразователь
Для чего нужен частотный преобразователь
Последнее время на производствах наблюдается тенденция, заключающаяся в переходе с синхронных электродвигателей или двигателей с фазным ротором на асинхронные. Этот сдвиг можно объяснить различными причинами и большинство из них связано с экономией. Асинхронные двигатели более компактны и требуют меньшего обслуживания, нежели двигатели с фазным ротором или синхронные электродвигатели с щетками. Да и в целом если сравнить цену асинхронного и синхронного двигателя одинаковой мощности и напряжения, то станет очевидным почему все больше руководителей предприятий стремятся к этому переходу.
Но одним из недостатков асинхронных двигателей является меньшая точность позиционирования вала и соответственно менее точное управление скоростью его вращения. Так же оператору необходимо иметь возможность оптимизировать режим работы электродвигателя так, чтобы не было ненужной, потраченной впустую энергии. Для этого важно понимать возможности практического применения частотно-регулируемого привода (ЧРП)
Среди вопросов, которые нужно изучить:
Ответы на эти вопросы позволят понять и максимально использовать возможности преобразователя частоты и минимизировать затраты на эксплуатацию двигателя переменного тока в условиях производства.
Прямой пуск, устройства плавного пуска или частотные преобразователи
Электромагнитный пускатель
Есть несколько способов запустить и управлять электродвигателем. В основном запуск двигателя происходит прямым пуском через электромагнитный пускатель. При таком подходе на двигатель подается полное напряжение, и он максимально быстро развивает номинальную скорость.
Проблема с которой сталкиваются операторы при прямом пуске заключается в том, что импульс пускового тока может в 7 раз превышать ток полной нагрузки двигателя. В течение очень короткого периода времени на двигатель и его элементы подается очень сильный импульс тока. Если мощный двигатель будет часто запускаться и останавливаться, то он быстрее износится и выйдет из строя, а также может вывести из строя исполнительный механизм работающий от него.
Устройство плавного пуска
Напротив, устройство плавного пуска сокращает пусковые токи до 2-4 крат, уменьшая нагрузку и крутящий момент, прилагаемый к двигателю. Такой подход позволяет двигателю разгоняться со скоростью, которая определяется настройкой самого устройства плавного пуска. Оператор может установить конкретное время разгона, и с момента запуска до назначенного времени двигатель будет плавно разгоняться. Такой подход позволяет снизить пусковой ток, снизить риск преждевременного выхода из строя оборудования и сэкономить немного электроэнергии. Устройства плавного пуска идеально подходят в тех случаях, где линейное изменение скорости и управление крутящим моментом являются критически важными компонентами, а также в системах трубопроводов, чтобы избежать гидроударов при пуске и останове насосов.
Частотный преобразователь
ЧРП продвигает эту концепцию на шаг вперед, позволяя оператору всегда контролировать пусковой ток и скорость вращения электродвигателя. ЧРП может управлять двигателем как во время цикла пуска/останова, так и в течение всего времени его работы. ЧРП необходим там, где требуется полный контроль скорости, а основной проблемой является повышенное потребление энергии.
По первоначальным вложениям средств устройство плавного пуска является менее дорогим вариантом, но экономический эффект от внедрения преобразователя частоты может в разы окупить его стоимость.
Основные функции преобразователя частоты
Управление расходом является одним из наиболее распространенных применений ЧРП. Реальные условия часто требуют пониженной скорости потока жидкости, поэтому возможность изменять скорость работы насоса для управления расходом имеет первостепенное значение. Для уменьшения потока в подавляющем большинстве случаев используются задвижки и клапаны, но эта стратегия не способствует энергосбережению. И наоборот, ЧРП может контролировать скорость потока, одновременно оптимизируя потребление электроэнергии.
Может возникнуть ситуация, когда оператору необходимо в определенное время дня запускать двигатель с максимальной производительностью, а в другое время работать на неполной нагрузке. Это и есть реальная причина популярности ЧРП, так как при работе на сниженных оборотах можно экономить электроэнергию и уменьшать эксплуатационные расходы. Если оператору необходимо просто запустить асинхронный двигатель с постоянной скоростью, которая меньше номинальной скорости двигателя, можно использовать редуктор. Однако, если исполнительный механизм представляет собой нагрузку с переменным крутящим моментом, то лучший вариант – это частотный преобразователь.
Например, представьте, что для запуска вентилятора на градирне используется асинхронный электродвигатель. Чем быстрее нужно вращаться вентилятору, тем он больше будет потреблять энергии. Из-за изменения условий внешней среды в течение дня температура окружающего воздуха может снизиться. Из-за этого, возможно, вентилятору достаточно работать на скорости, которая меньше, чем требовалось в жаркую часть дня. Вращаясь на полной скорости вентилятор тратит дорогостоящую энергию впустую в то время, как мог бы вращаться медленнее.
Дополнительные преимущества
Помимо функции энергосбережения большинство ЧРП позволяют оператору устанавливать различные параметры для ограничения крутящего момента. Это делается путем ограничения выходного тока на двигателе. Необходимо защитить все элементы приводного механизма, так как они имеют механические ограничения. Превышение этих ограничений из-за чрезмерного затягивания пуска может привести к серьезным повреждениям или дорогостоящей неисправности.
Большинство ЧРП чрезвычайно гибки в настройке и имеют встроенные входы и выходы (I/O). Эти входы/выходы могут использоваться для настройки различных функций, включая функции пуска/останова, изменения направления вращения, выбора постоянной скорости, регулировки скорости и т.д. Кроме того, аналоговые выходы ЧРП могут быть сконфигурированы для обеспечения обратной связи с системой управления предприятия, включая энергопотребление, фактическую скорость, частоту, крутящий момент и т.д. При изменении технологического процесса, например, при необходимости изменить скорость, система управления установкой сама может передать сигнал в соответствии с назначенной уставкой.
На сегодняшний день частотные преобразователи развились до такой степени, что для управления расходом многие из них могут быть совмещены с насосом или вентилятором прямо «из коробки», используя предопределенный макрос. В этом случае расходомер будет подключаться непосредственно к аналоговому входу привода. Оператор может задать желаемый поток дистанционно, и ЧРП будет поддерживать этот поток, выполняя внутренний цикл ПИД. Некоторые приводы позволяют оператору настраивать почасовые графики расхода, а также могут подключать дополнительные насосы по мере необходимости в режиме онлайн.
Встроенный вход/выход ЧРП – не единственный способ управления приводом. Многие из них позволяют использовать различные протоколы связи, которые могут управлять ЧРП с контроллеров большинства производителей. Все стандартные протоколы доступны для большинства ЧРП, что позволяет оператору иметь двунаправленную связь одним кабелем.
Почему это важно? Благодаря использованию одного кабеля, в отличие от прокладывания нескольких проводов, затраты на установку ЧРП сводятся к минимуму, и по этому кабелю может передаваться гораздо больший объем данных. Эти данные относятся не только к расширенному управлению, но и к мониторингу. Обычно операторы следят за скоростью, крутящим моментом, током и температурой привода.
Наконец, расходы на техническое обслуживание могут быть значительно снижены из-за уменьшения износа оборудования благодаря контролируемому пуску. Кроме того, в случаях, когда применение ЧРП устраняет необходимость в использовании заслонок и клапанов, затраты на техническое обслуживание этих элементов системы также могут быть исключены.
Частотные преобразователи продолжают набирать популярность в разных отраслях промышленности по мере роста преимуществ их внедрения, большинство из которых так или иначе связаны с уменьшением затрат и экономией электроэнергии.
Частотно-регулируемые приводы и устройства плавного пуска: грамотный подход к выбору необходимого оборудования
Во всем мире, в том числе и в нашей стране, на сегодняшний день является актуальной задача преобразования электрической энергии в механическую. Для этой задачи используются различные электроприводы, позволяющие управлять работой синхронных и асинхронных двигателей, которые в свою очередь приводят в движение необходимый механизм, будь то насос или конвейер. Для решения этих задач может применяться разное оборудование — в основном это частотно-регулируемый привод и устройство плавного пуска. В этой статье будут рассмотрены основные принципы работы этого оборудования, а также рекомендации по выбору нужных приборов для решения производственных задач.
Начнем с терминологии.
Частотно-регулируемый привод (ЧРП, частотный преобразователь, ПЧ) это устройство для управления синхронным и асинхронным двигателем, состоящее из двух основных функциональных модулей:
В результате двигатель сохраняет номинальный момент на валу и движется с необходимой скоростью.
Устройство плавного пуска (УПП) — устройство для плавного безударного пуска с ограничением пускового тока, длительной работы в номинальном режиме и торможения высоковольтных асинхронных электродвигателей.
Итак, остановимся подробнее на выборе устройств.
Выбор частотно-регулируемого привода
При выборе модели ЧРП необходимо обратить внимание на следующие моменты.
Чем шире мощностной ряд, тем больше механизмов, которыми можно будет управлять с помощью данного ЧРП. Сохраняется тип подключения, опциональные компоненты. На выходе — большое число задач, решаемых работой одного прибора.
В России качество многих сетей на сегодняшний день оставляет желать лучшего. Потому характеристика входного напряжения часто бывает величиной нестабильной. Данная проблема частично решается посредством установки дросселей на входе преобразователя. Однако, чем заявленный диапазон входного напряжения ЧРП шире, тем лучше.
— Режимы управления ЧРП.
Существуют различные способы управления ПЧ. Наиболее распространенные: программируемый логический контроллер, компьютер, встроенная панель или выносной пульт, а также напрямую через клеммы управления.
Преобразователи частоты могут работать в скалярном и векторном режимах.Скалярный режим более простой, но при этом имеет свое преимущество: возможность управления более мощными электродвигателями при сохранении тех же силовых элементов в цепи. Применяется чаще всего при работе с насосами, вентиляторами и конвейерами. Векторный режим в отличие от скалярного обеспечивает управление магнитным потоком ротора. При выборе такого управления, возможно работать с двигателем как в обычном режиме, так и в режимах с повышенной точностью задания скорости или момента на валу.
— Диапазон регулирования частоты. Нижний предел указывает на диапазон регулирования скорости электродвигателя. Верхний предел является значимой величиной при работе с двигателями высокой номинальной частоты до 800 Гц.
Это основные параметры, на которые необходимо обращать внимание при выборе ЧРП. Разумеется, здесь представлены не все характеристики ПЧ. В любом случае, если нет уверенности в правильности сделанного выбора, лучше обратиться к специалистам. Квалифицированные специалисты Корпорации Триол всегда рады Вашему звонку или письму.
Выбор устройства плавного пуска
Принцип работы УПП основан на ограничении напряжения сети на нагрузке при помощи симисторов или тиристоров, включенных встречно-параллельно. Исходя их этого, регулируются ток и напряжение на двигателе. УПП предназначается для разгона и останова асинхронного двигателя, имеющего высокий пусковой момент. При выборе УПП необходимо остановиться на следующих свойствах.
После запуска двигателя с нагрузкой устройство желательно вывести из силовой цепи по двум причинам:
1. УПП необходимо подготовить к последующей работе, соответственно прибору нужно дать остыть после пуска;
2. Минимизируются потери из-за падения напряжения на симисторах. Этого можно достичь, соединяя пофазно вход и выход УПП шунтирующим контактором. Однако тепловые потери на силовых ключах намного меньше потерь на УПП в режиме пуска даже при длительном протекании силового тока. Поэтому некоторые УПП производятся и без шунтирующего контактора.
По элементной базе разделяют на аналоговые и цифровые УПП.
По числу ключей в фазах УПП делятся на неполнофазные (имеющие ключи в 1…2 фазах) и полнофазные (имеющие ключи во всех фазах). Полнофазные УПП обеспечивают симметричное распределение токов по фазам.
— Контроль величины тока.
Чаще всего УПП, не имеющие функции контроля тока, повышают за определенное время напряжение на двигателе от начального до номинального значения. Если же стоит задача ограничения тока, без данной функции не обойтись. В случаях, когда наблюдается ограниченная мощность сети, существует вероятность аварии из-за превышения предельно допустимого тока. УПП, имеющие данную функцию, способны обеспечить плавное нарастание тока в начале процесса пуска.
При подаче на электродвигатель постоянного тока происходит его интенсивное торможение. Функция УПП подачи тока на обмотку чаще всего применяется в системах, которые могут двигаться сами собой при отсутствии тормоза, — подъемники, фуникулеры.
УПП имеет ряд защит двигателя и механизма. В этот комплекс входят: защита от перекоса фаз, изменения чередования фаз, перегрева радиаторов УПП, защита от перегрузки и неисправностей силовой цепи, слишком маленького тока, от снижения частоты. Но стоит оберегать прибор от короткого замыкания в цепи нагрузки, в противном случае УПП может выйти из строя. Однако при правильном монтаже короткое замыкание — процесс не мгновенный, и прибор, скорее всего, просто отключится при снижении сопротивления нагрузки. Но, прежде чем снова запускать его в работу, необходимо устранить причину, приведшую к короткому замыканию.
На сегодняшний день различные отрасли российской промышленности применяют электропривод переменного тока для решения своих задач: водоснабжение, энергетика, атомная, оборонная промышленности, нефтегазовая отрасль, автоматизированное производство, крановое и лифтовое производство, вентиляция, кондиционирование. Помимо перечисленных характеристик, у преобразователя частоты и устройства плавного пуска, также важны и другие параметры: номинальные мощность и ток двигателя, напряжение питания, число пусков в час, длительность пуска/останова, пусковой ток.
Преобразователи частоты и устройства плавного пуска с фирменным логотипом «Триол» работают и на северных заснеженных просторах, и в Волгоградских степях, и в Сибири, и на жарком черноморском побережье. Перечислить все машины и механизмы, в приводах которых установлено оборудование «Триол», представляется вообще весьма затруднительным. Вот лишь небольшая часть из всего многообразия:
мельницы, дробилки, грануляторы, экструдеры, массажеры, волчки, куттеры, гомогенизаторы, жом-прессы, этикетировочные аппараты, укупорочные машины и много чего еще специфического. Сюда же следует добавить и привычные слуху насосы, вентиляторы, транспортеры, конвейеры, технологические линии.
В любой точке России Корпорация «Триол» предоставляет качественное сервисное обслуживание и практические консультации по вопросам внедрения и использования продукции. Услуги сервисной поддержки представлены 9 сервисными центрами, расположенными в разных регионах страны для обеспечения максимальной логистики и оперативного реагирования на возможные проблемы, возникшие у наших клиентов.
Источник: Андрей Степанов, Корпорация «Триол»
Самый экономичный способ управления двигателями – преобразователь частоты
В промышленности свыше 60% электроэнергии потребляется асинхронными электроприводами – в насосных, компрессорных, вентиляционных и других установках. Это наиболее простой, а потому дешевый и надежный тип двигателя.
Технологический процесс различных производств в промышленности требует гибкого изменения частоты вращения каких-либо исполнительных механизмов. Благодаря бурному развитию электронной и вычислительной техники, а также стремлению снизить потери электроэнергии появились устройства для экономного управления электродвигателями различного типа. В этой статье как раз и поговорим о том, как обеспечить максимально эффективное управление электроприводом. Работая в компании «Первый инженер» (группа компаний ЛАНИТ), я вижу, что наши заказчики всё больше внимания уделяют энергоэффективности
Большая часть электрической энергии, потребляемой производственными и технологическими установками, используется для выполнения какой-либо механической работы. Для приведения в движение рабочих органов различных производственных и технологических механизмов преимущественно используются асинхронные электрические двигатели с короткозамкнутым ротором (в дальнейшем именно о данном типе электродвигателя и будем вести повествование). Сам электродвигатель, его система управления и механическое устройство, передающее движение от вала двигателя к производственному механизму, образуют систему электрического привода.
Наличие минимальных потерь электроэнергии в обмотках за счет регулирования частоты вращения двигателя, возможность плавного пуска за счет равномерного увеличения частоты и напряжения — это основные постулаты эффективного управления электродвигателями.
Ведь ранее существовали и до сих пор существуют такие способы управления двигателем, как:
Потери неизбежны?
Остановимся более подробно на электрических потерях, возникающих в асинхронном электродвигателе.
Работа электрического привода характеризуется целым рядом электрических и механических величин.
К электрическим величинам относятся:
при учете которой формула приобретает вид:
Зависимость вращающего момента двигателя M от частоты вращения его ротора n называется механической характеристикой электродвигателя. Отметим, что при работе асинхронной машины со статора на ротор передается через воздушный зазор с помощью электромагнитного поля так называемая электромагнитная мощность:
Часть этой мощности передается на вал ротора в виде механической мощности согласно выражению (2), а остальная часть выделяется в виде потерь в активных сопротивлениях всех трех фаз роторной цепи.
Эти потери, называемые электрическими, равны:
Таким образом, электрические потери определяются квадратом тока, проходящего по обмоткам.
Они в сильной степени определяются нагрузкой асинхронного двигателя. Все другие виды потерь, кроме электрических, изменяются с нагрузкой менее существенно.
Поэтому рассмотрим, как изменяются электрические потери асинхронного двигателя при регулировании частоты вращения.
Электрические потери непосредственно в обмотке ротора электродвигателя выделяются в виде тепла внутри машины и потому определяют ее нагрев. Очевидно, чем больше электрические потери в цепи ротора, тем меньше КПД двигателя, тем менее экономична его работа.
Учитывая, что потери в статоре примерно пропорциональны потерям в роторе, еще более понятно стремление уменьшить электрические потери в роторе. Тот способ регулирования частоты вращения двигателя является экономичным, при котором электрические потери в роторе относительно невелики.
Из анализа выражений следует, что самый экономичный способ управления двигателями заключается в частоте вращения ротора, близкой к синхронной.
Частотно-регулируемые приводы
В обиход различных сфер промышленности, которые используют насосное, вентиляционное оборудование, конвейерные установки, объекты генерации (ТЭЦ, ГРЭС и т.п.) и др. вошли такие установки, как частотно-регулируемые приводы (ЧРП), также называемые преобразователями частоты (ПЧ). Данные установки и позволяют изменять частоту и амплитуду трехфазного напряжения, поступающего на электродвигатель, за счет чего и достигается гибкое изменение режимов работы управляющих механизмов.
Высоковольтный частотно-регулируемый привод
Приведем краткое описание существующих преобразователей частоты.
Конструктивно преобразователь состоит из функционально связанных блоков: блока входного трансформатора (шкаф трансформатора); многоуровневого инвертора (шкаф инвертора) и системы управления и защит с блоком ввода и отображения информации (шкаф управления и защит).
В шкафу входного трансформатора производится передача энергии от трехфазного источника питания входным многообмоточным трансформатором, который распределяет пониженное напряжение на многоуровневый инвертор.
Многоуровневый инвертор состоит из унифицированных ячеек – преобразователей. Количество ячеек определяется конкретным конструктивом и заводом-изготовителем. Каждая ячейка оснащена выпрямителем и фильтром звена постоянного тока с мостовым инвертором напряжения на современных IGBT транзисторах (биполярный транзистор с изолированным затвором). Первоначально выпрямляется входной переменный ток, а затем с помощью полупроводникового инвертора преобразуется в переменный ток с регулируемой частотой и напряжением.
Полученные источники управляемого переменного напряжения соединяются последовательно в звенья, формируя фазу напряжения. Построение выходной трехфазной системы питания асинхронного двигателя производится включением звеньев по схеме «ЗВЕЗДА».
Система управления защиты располагается в шкафу управления и защиты и представлена многофункциональным микропроцессорным блоком с системой питания от источника собственных нужд преобразователя, устройством ввода-вывода информации и первичными сенсорами электрических режимов работы преобразователя.
Потенциал экономии: считаем вместе
На основании данных, предоставленных компанией Mitsubishi Electric, оценим потенциал энергосбережения при внедрении преобразователей частоты.
Вначале посмотрим, как меняется мощность при различных режимах регулирования двигателя:
А теперь приведем пример расчета.
КПД электродвигателя: 96,5%;
КПД частотно-регулируемого привода: 97%;
Мощность на валу вентилятора при номинальном объеме: 1100 кВт;
Характеристика вентилятора: H=1,4 о.е. при Q=0;
Полное рабочее время за год: 8000 ч.
Режимы работы вентилятора согласно графику:
Из графика получаем следующие данные:
100% расхода воздуха – 20% времени работы за год;
70% расхода воздуха – 50% времени работы за год;
50% расхода воздуха – 30% времени работы за год.
Экономия между работой под номинальной нагрузкой и работой с возможностью регулирования скорости вращения двигателя (работа совместно с ЧРП) равна:
7 446 400 кВт*ч/год — 3 846 400 кВт*ч/год= 3 600 000 кВт*ч/год
Учтем тариф на электроэнергию равным — 1 кВт*ч / 5,5 руб. Стоит отметить, что стоимость взята по первой ценовой категории и усредненному значению для одного из промышленных предприятий Приморского края за 2019 г.
Получим экономию в денежном выражении:
3 600 000 кВт*ч/год*5,5 руб/кВт*ч= 19 800 000 руб/год
Практика реализации подобных проектов позволяет с учетом затрат на эксплуатацию и ремонты, а также стоимости самих преобразователей частоты добиться срока окупаемости в 3 года.
Как показывают цифры, в экономической целесообразности внедрения ЧРП сомневаться не приходится. Однако одной экономикой эффект от их внедрения не ограничивается. ЧРП осуществляют плавный пуск двигателя, значительно уменьшая его износ, но об этом я расскажу в следующий раз.