сухой лед для еды
Сухой лед
Для охлаждения и заморозки продуктов, вспенивания яиц и придания блюдам более насыщенного и изысканного вкуса в молекулярной кухне используют сухой лед. Вещество представляет собой замерзшую углекислоту и применяется как альтернатива обычному льду, а также холодильным установкам.
Напоминаем, что у нас есть курс по уникальным техникам декора блюд. Курс включает в себя значительное количество техник молекулярной кухни. Курс подходит для профессионалов и любителей, ознакомиться можно, перейдя по ссылке сейчас. Мы также оставим ссылку в конце статьи, чтобы Вы могли ознакомиться с курсом после ее прочтения.
Также мы проводим онлайн мастер-классы по молекулярной кухне, анонсы можно посмотреть здесь
История применения сухого льда
Это вещество придумали во Франции в начале 19 века, но впервые в коммерции оно было применено в 20-х годах ХХ века в США. Это весьма ценный продукт, поскольку он трансформируется в газ, минуя жидкостную фазу. Кроме того, обычный лед дает в два-три раза меньше холода, чем сухой в одинаковых температурных режимах.
Обычно его используют для охлаждения продуктов питания, мороженого в розничной продаже, пива, минеральной воды и пр., когда охлаждение при помощи холодильника нежелательно или по каким-либо обстоятельствам технически невозможно.
Что такое сухой лед
Диоксид углерода (СО2) или замерзшая углекислота в стандартных условиях (при температуре
20 °C и атмосферном давлении 760 мм) превращается в газ, не трансформируясь в жидкое состояние. В природе бывает только в виде газа без цвета и запаха, который на 59 % превышает вес воздуха. Атмосфера нашей планеты содержит 0,03 % углекислого газа, без которого невозможно существование биосферы Земли.
Как сделать сухой лед в промышленных и домашних условиях
Изготавливается сухой лед при помощи несложного, но ответственного процесса. На первом этапе углерод превращают в двуокись, затем диоксид (СО2) в газообразном состоянии. Полученную субстанцию сжимают до 5 атмосфер, равномерно и одновременно опуская температуру до минус 56,4 °C, превращая в жидкую среду. Затем давление опускают, и расширившаяся жидкость двуоксида углерода испаряется с интенсивным поглощением тепла. В промышленности, газ для синтеза диоксида в лед, получают из производных разложения известняка, доломита и печных газообразований.
Процесс быстрого охлаждения препятствует испарению всего диоксида, оставшаяся субстанция твердеет, кристаллизуется в виде снегообразных хлопьев и обращается в твердый диоксид углерода (СО2). Для превращения хлопьев в полноценный продукт, их спрессовывают в брикеты весом до 30 кг или цилиндры диаметром до 10 мм.
Ошибочно полагать, что сухой лед в домашних условиях изготовить невозможно. Технология его получения достаточно простая. Главное — найти сырье. Как источник жидкой углекислоты можно использовать огнетушитель с пометкой «ОУ» (углекислотный).
Как приготовить сухой лед своими руками? Поможет пошаговая инструкция.
Как и где хранить сухой лед?
Для увеличения срока годности спрессованные брикеты помещают в предназначенные для длительного хранения сухого льда термоизоляционные боксы. Для транспортировки используют переносные контейнеры.
Использование специальных резервуаров обязательно. Если не создать правильных условий хранения, сухой лед испарится. В бытовых условиях можно воспользоваться:
Техника безопасности при работе с сухим льдом
Углекислота, испаряемая при трансформации диоксида, в 1,5 раза тяжелее воздуха, поэтому опускается вниз. При невысокой концентрации смесь не взрывоопасна. Однако во избежание форс-мажорных ситуаций проводить долгосрочные работы с этим веществом следует на свежем воздухе или в хорошо вентилируемых, просторных помещениях.
Охлаждение продуктов посредством диоксида углерода обладает рядом существенных преимуществ.
Молекулярная гастрономия с использованием диоксида углерода
В молекулярной кулинарии сухой лед —незаменимый помощник в приготовлении самых изысканных блюд и десертов. Главное преимущество: его легко достать даже начинающему кулинару — это обычная углекислота, замороженная особым способом.
Сухой лед оказывает влияние на органы осязания и обоняния, многократно усиливая их чувствительность к вкусу и аромату блюд. В ресторанах молекулярной гастрономии одним из первых открыл и сумел оценить уникальные свойства данной субстанции шеф-повар из Англии Хестон Блюменталь. Подавая гостям блюда, приготовленные в его молекулярной кухне, маэстро поливал лед изобретенной им ароматической жидкостью. Рассеиваясь по столу вместе с газом, изысканные ароматы окутывали гостей, позволяя по-новому оценить вкус ранее опробованных блюд.
При помощи этой технологии преображается и без того изысканное блюдо называемое «Перепелиный студень», суп-пюре из лангустов, трюфели и «Десерт из утиной печени». Подают блюда к столу с дубовым лотком, в который засыпаются осколки диоксида и мох дуба. После определенных манипуляций, начинает струиться густой ароматический туман. Впечатления поистине потрясающие!
Также сухой лед в молекулярной кухне используется для вспенивания яиц и кисломолочных продуктов (йогуртов, коктейлей), для газирования алкогольных и безалкогольных напитков и даже овощей и фруктов. Это вещество позволяет сохранять свежесть трюфелей и полезные свойства зеленых салатов. Уникальные физические характеристики диоксида открывают перед кулинарами колоссальные перспективы и возможности для полета творческой фантазии!
Еще раз напомним, что у нас есть курс по уникальным техникам декора блюд. Курс включает в себя значительное количество техник молекулярной кухни. Курс подходит для профессионалов и любителей, ознакомиться можно, перейдя по ссылке сейчас. Также мы проводим онлайн мастер-классы по молекулярной кухне, анонсы можно посмотреть здесь.
Применение сухого льда
Хранение продуктов питания
Сухой лед – это практичный материал, который можно применять повсеместно в различных кругах жизнедеятельности человека. В обычных условиях диоксид углерода минует водянистую фазу и сразу приобретает твердый вид.
Пищевая сфера
Особенно жизненно применение сухого льда в пищевой промышленности:
Также диоксид углерода пригодится для эффективного очищения емкостей, техники, стен и полов на предприятиях перерабатывающей области.
Использование сухого льда в кулинарии целесообразно в молекулярной кухне. Повара, подавая блюда, поливают его особой ароматической жидкостью. Благодаря этому происходит рассеивание запахов, и меняются вкусовые ощущения от пищи. Применение сухого льда распространено в баре при сервировке и подаче напитков. Это относительно новое направление при приготовлении всевозможных коктейлей. При присоединении к воде диоксид углерода испаряется, выделяет углекислый газ и красиво дымится. Такое зрелище придает напиткам увлекательный визуальный эффект и новый вкус. Очень распространенным становится применение сухого льда в ресторанной промышленности.
Бытовая область
Двуокись углерода подходит для аккуратного очищения разнообразных поверхностей там, где запрещены абразивные материалы. Применение сухого льда в быту представляет собой криогенный бластинг, который получил активное распространение во всем мире. В его основе лежит струйное распыление гранулированного сухого льда. Такая обработка лучше, чем паровая, пескоструйная, абразивная или водяная, ведь она не оставляет твердых либо жидких частиц в месте проведения работ. Реагент испаряется полностью, принимая газообразную форму.
В бытовой области данный реагент может понадобиться и для:
Также актуально применение сухого льда в ритуальных услугах как охладителя для долгого сохранения.
Другие области
Диоксид углерода будет полезен и в таких сферах как:
Растениеводство.
Применение сухого льда в растениеводстве – это подкормка в жаркое время года. Средство разбивается на мельчайшие кусочки и равномерно распределяется в ящиках по теплице.
Пожарная работа.
Применение сухого льда для пожарных систем началось недавно. Им очищают помещения после пожара, так как он легко, экономично и просто удаляет копоть, нагар и другие отложения. Им можно почистить труднодоступные и маленькие промежутки между конструкционными элементами. Также им тушат огонь, поскольку углекислота не дает доступа кислороду и гасит пламя.
Метеорология.
Применение сухого льда в метеорологии для установки хорошей погоды состоит в том, что его распыляют на слоистые формы облаков. Данный реагент распыляется с самолета.
Сухой лед для еды
Криогенный бластинг (безабразивная струйная очистка различных поверхностей)
Охлаждение для транспортировки и хранения мясной, рыбной и плодово-ягодной продукции. Сухой лед имеет замораживающую способность, многократно превышающую замораживающую способность водяного льда. Заморозка мясной, рыбной и плодово-ягодной продукции
Хранение продуктов питания при авиаперевозках
Хлебопекарная промышленность. Сухой лед замедляет рост дрожжевых бактерий до определенного времени
Клеймение рогатого скота и лошадей
Экстренная замена неисправных холодильников и морозильных камер
Карбонизация напитков (газировка, коктейли)
Зачистка отлитых пластмасс и резин
Создание спецэффектов в шоу-бизнесе, фотографии тд.
Борьба с грызунами. Если засыпать гранулированный сухой лед в нору грызуна, через некоторое время углекислый газ вытеснит из нее кислород. Для достижения полного эффекта необходимо убедиться, что нора не сквозная.
Сохранение цветов. Сухой лед охлаждает цветы и задерживает момент их распускания (цветения). Поддержание стабильной низкой температуры значительно замедляет процесс цветения. Для избегания замораживания нельзя допускать прямого контакта цветов с сухим льдом.
Удаление напольной керамической плитки. Керамическую плитку можно снимать с пола, насыпав на ее поверхность немного сухого льда. Плитка снимается легче за счет охлаждения и сжатия. Эта процедура может занять много времени для снятия большого количества плитки, но для того, чтобы снять 1-2 плитки, она очень удобна.
Хранение улова и охотничьей добычи
Используется в качестве инертной среды. Так как углекислый газ тяжелее воздуха и не поддерживает горение, сухой лед используется для вытеснения кислорода из некоторых емкостей, например для демонтажа подземных резервуаров с горючими газами или жидкостями.
Выращивание растений. Подкормка тепличных растений углекислым газом
Охлаждение компьютерных процессоров
В развлекательных целях: При прямом контакте металла с сухим льдом металл начинает издавать громкий пронзительный звук. Данный эксперимент можно провести, положив металлическую ложку в сухой лед. В ложку можно налить немного воды для того, чтобы пронаблюдать процесс ее замерзания. Будьте осторожны, так как при длительном контакте ложка охладиться настолько, что может повредить кожу при прямом контакте. Туманные пузыри. При добавлении мыльного раствора в смесь воды и сухого льда образуются пузыри, наполненные плотным туманом. Выстрел. Если насыпать немного гранул сухого льда в пластиковую коробку от фотопленки, закрыть её крышкой и немного подождать, крышка может выстрелить на несколько метров. Точно так же можно запускать ракеты с водой, но для этого необходимы специальные приспособления. Надувание резинового баллона или воздушного шарика. Можно насыпать немного сухого льда в шарик, плотно закрыть его и бросить его в бассейн или какой либо водоем. Сначала шарик утонет, но по мере наполнения газом поднимется на поверхность и взорвется. Звуковая линза. Воздушный шарик, наполненный углекислым газом, может работать как звуковая линза. Дело в том, что в углекислом газе звук движется медленнее, чем в воздухе, точно так же, как свет движется медленнее через стекло, чем через воздух или вакуум. Получить шарик, наполненный углекислым газом, можно. положив в него немного сухого льда. Держите, шарик, наполненный углекислым газом, на расстоянии примерно 30 см от уха – звуки, проходящие через него, должны усиливаться. Как видите, области применения сухого льда просто бесчисленны! Практически любое производство и многие виды бизнеса являются потенциальными потребителями сухого льда и могут с его помощью значительно увеличить свои конкурентные преимущества и преимущества своих товаров.
Все слышали новость о том, как на дне рождения у девушки-блогера в бассейн сауны засыпали 25 кг сухого льда. В результате чего погибло 3 человека.
Хочется немного предостеречь от паники. Здесь я попытаюсь рассказать о том, почему так произошло и насколько опасно научное шоу для детей.
Научное шоу я провожу уже 8 лет. Самое эффектный эксперимент это когда ведущий закидывает 2 кг сухого льда в 4 литровое ведро воды. Сухой лед растворяется и превращается в пар, который заполняет пространство на 12 кв. м.
Выделяется углекислый газ, он холодный, поэтому мы видим его в видео белого тумана. Он тяжелее воздуха в 1,5 раза, поэтому просто стелиться на полу.
Вернёмся к событиям.
Ребята высыпают 25 кг льда в бассейн, в котором около 12 000 литров воды. В помещение где нет свежего воздуха. Появляется огромный жирный слой дыма, который лежит на уровне воды в бассейне. Вы знаете, что этот дым и есть углекислый газ.
Молодой человек ныряет в бассейн. Выныривает и пытается вдохнуть воздух. Воздух в котором практически 70% углекислого газа. Никто его не спасает, потому как ребята, которые стоят выше не понимают, что произошло. Углекислый газ не поднялся до их уровня.
Надо напомнить, что в обычном воздухе, который мы с вами вдыхаем, содержится 78 % азота и 0,03 % углекислого газа, а так же какое-то количество других газов.
Если в воздухе содержится 2-3% углекислого газа, то у человека появиться сонливость и головная боль. Такое часто бывает в подолгу непроветриваемом помещение, где находиться много людей. Потому что мы выдыхаем углекислый газ.
При уровне содержания от 5 до 8% становиться тяжело дышать, повышается давление.
Выше 8 % углекислого газа в воздухе у человека кружиться голова, и он теряет сознание. Кислород, который нужен для работы организма не поступает и тело, как машина без бензина, просто не может работать.
Мне очень жаль ребят. я соболезную девушке, которая потеряла друзей и любимого мужа.
Обычно ведущие химики используют примерно 4 кг сухого льда на все шоу. При нагревании сухой лёд даст примерно 508,9 л углекислого газа. В комнате площадью 12 кв.м около 48000 литров воздуха. Количество выделяемого углекислого газа точно не превысит 8%, даже в маленькой комнате.
Но всегда нужно соблюдать технику безопасности. Проветривать помещение. Не собирать много людей в одну маленькую комнату.
Стоит ли теперь совсем отказаться от научного шоу? Мол вот случай, когда люди умерли от сухого льда, так что теперь больше никого сухого льда в жизни, давайте как можно дальше отгородимся от этого. Определенная логика в этом есть, я согласен.
Но это тоже самое, что сказать вот был случай когда люди поперхнулись косточкой, давайте уберем все продукты, где есть косточки.
Сейчас самый верный вариант найти нормального химика, который в удобоваримой форме расскажет детям о том, что такое жидкий азот, сухой лед, электричество, газ. Как это выглядит и объяснит технику безопасности.
Я думаю, что это уже стоит называть не научное шоу, а, например, лабораторная работа, научные исследования или как то еще. И заказывать такую программу надо не на день рождения и выпускной, а в форме открытого урока. Где нет главной цели развлечь, а важно донести информацию.
Закрыв на это глаза и отмахнувшись, что этого не существует, мы получим новые истории. О том, как подростки закинули в ванную сухой лед и угорели. О том кто-то делал эксперимент на кухне, и не рассчитал силы.
Сейчас в интернете много ужаса связи с этой печальной новостью. Начались проверки среди производителей сухого льда. Но никто не проверяет школы, как проходят уроки и какой уровень знания у детей об опасном использовании различных веществ. Школам легче что-то запретить, и это нормально, чем дать ребенку понимание что можно, а что нельзя.
Да любому вменяемому человеку понятно, что при желании можно убиться чем угодно, можно крота хебнуть, покрасить себя краской или лаком, нырнуть в ванну с крепким алкоголем, руку в концентрированную лимонную кислоту засунуть и еще много чего не принесет пользы организму.
«. найти нормального химика, который в удобоваримой форме расскажет детям о том, что такое жидкий азот, сухой лед, электричество, газ».
Если вы настолько безграмотны, что не отличаете химию от физики, то не стоит позориться на весь Интернет. Сухой лёд, его образование, таяние и «дымление», и перечисленные Вами явления суть физические процессы, к химии отношения не имеющие. Попробуйте в школу походить.
все свойства всех элементов знать не получится. да и не надобно если есть голова с мозгом.
это не сухой лёд, оболтус, а двуокись углерода.
надо не тебя заказывать и шоу переименовывать, а изначально называть вещества своими названиями, а не бытовыми жаргонизмами
Ответ на пост «Научный эксперимент. Что быстрее индукционная поверхность или электрическая?»
Сперва я решил проверить методику на электрочайнике.
Заливаю в него литр холодной воды, температурой 14 градусов. Вообще, к точности измерения температуры пирометром у меня есть вопросы. Показания пирометра очень сильно зависят от типа поверхности, с которой снимаются показания. Но в данном случае, температура воды действительно по ощущениям была температурой около 14 градусов.
Литр отмерял стеклянной банкой, в интернетах пишут что если залить ее по специально сделанную риску, что тогда объем жидкости будет ровно 1 л.
Пока чайник греется, измеряем напряжение непосредственно в той розетке, куда подключен чайник, с помощью тройника. Напряжение 230,82В.
С измерением силы переменного тока есть некоторые проблемы. У мало каких широко распространенных в продаже приборов есть возможность измерения силы переменного тока.
Итак, считаем энергию.
Етеор = c*m*(t2-t1)=4190*1*(98-14)= 351960 Дж.
Ереал = P*t=U*I*t=230,8*8,99*190=394229 Дж.
Энергетический КПД чайника: n=351960/394229*100%=89,3%.
Данный результат хорошо согласуется с теорией, следовательно можно сделать вывод что методика вполне рабочая. Чайник имеет такой высокий КПД благодаря тому что электрическая энергия практически сразу переходит в нагрев воды, поскольку ТЭН находится непосредственно в дне чайника, потери энергии наружу минимальны, сам чайник пластиковый, плохо проводит тепло. Также немалый вклад дает тот факт, что чайник очень быстро греет воду. За столь короткое время энергия просто не успевает рассеяться любыми способами.
Переходим к электроплите. Электроплита обычная, с чугунными комфорками. Наливаем 2 л той же воды, той же температуры. Сама кастрюля весит 500 г. Накрываем крышкой для уменьшения теплопотерь за счет испарения.
Засекаем время, измеряем напряжение и ток. Напряжение 233,85 В, ток 7,033А. Напряжение измерял в щитке, поскольку лезть в печь при ее работе затруднительно.
Время до закипания 15мин 28с. Расчетная мощность комфорки 1,645 кВт.
Итак, считаем энергию.
Етеор = c*m*(t2-t1)=4190*2*(98-14)= 703920 Дж.
К этой энергии нужно приплюсовать теплоемкость самой кастрюли (0,5 кг) и комфорки (1,1 кг).
Екаст = 500*0,5*(98-14)=21000 Дж
Екомф = 540*1,1*(346-25)=190674 Дж.
Ереал = P*t=U*I*t=233,85*7,033*928= 1526251 Дж.
Энергетический КПД плиты: n=(703920+21000+190674)/1526251*100%=60%.
Даже если выкинуть из расчета этот спорный момент, в этом случае расчетный КПД составит 47,5%, что лишь на 2,5% меньше чем у индукции.
В общем, я продолжаю утверждать, что индукция нисколько энергетически не выгоднее, никакой сколько-нибудь ощутимой экономии она не дает, а напротив, при высокой цене и высоких затратах на ремонт (при выходе из строя) обойдется своему владельцу существенно дороже.
Игральные кости с химическими элементами. Видимо, для азартных химиков. )))
Испытывают ли боль беспозвоночные?
Поскольку боль вызывает сильные неприятные ощущения сравнимые с отвращением, то облегчение от природы её возникновения является полезным для животного. Животные стараются избегать ситуации, в которых они могут испытывать боль, а если они всё-таки её испытали, то они стараются ретироваться в такие места, где смогут получить облегчение от боли
Ни для кого не секрет, что позвоночные практически во всей своей массе могут испытывать боль. Исключениями могут быть всякие там рыбы и примитивные хордовые, но даже и для них существуют доказательства, что всё-таки и они имеют какой-то там слабый аффективный компонент боли [4].
Поэтому если мы хотим найти наличие хотя бы одного состояния боли у беспозвоночных, нам надо найти хотя бы наличие ноцицепоторов, а потом уже думать, что делать. И они таки и обнаруживаются среди многих таксонов беспозвоночных. Ноцицепторы есть у всех головоногих и у некоторых прочих моллюсков, у насекомых, ракообразных и даже нематод. Однако обнаружение этих элементов «программного обеспечения» боли всё ещё недостаточно, чтобы поставить 100% вердикт о существовании физического страдания у беспозвоночных животных. Чтобы это доказать учёные используют общепринятые поведенческие критерии, которые используются для предположения наличия аффективного состояния, выходящего за рамки простого ноцицептивного рефлекса. В качестве основных таких критериев обычно используют:
Т.е. они предоставляли те участки тела к «уничтожению», которые были более защищены от внешнего воздействия, или они покидали то место где их варварски угнетали [1].
Данный аргумент состоит в том, что мозг беспозвоночных недостаточно сложен, чтобы включать в себя цепи, производящие эмоциональную валентность. Однако, что «Илон Маск» сможет сказать на следующее?
Головоногие моллюски, «друзья Лавкрафта» достигшие эпичной крайности в эволюции мозга среди беспозвоночных. Они, в отличие от всех других беспозвоночных, имеют внушительный размер мозга, когнитивные способности и поведенческая гибкость которого, превосходят таковые у некоторых позвоночных с меньшим мозгом, включая земноводных и рептилий. Их нервная система устроена принципиально иначе, чем у позвоночных, с обширным периферическим контролем чувств и движений, который, по-видимому, происходит в значительной степени независимо от центрального мозга.
Их большой мозг и сложное поведение привели к растущему беспокойству об их благополучии, что даже вылилось в ужесточении норм биоэтики по отношению к данным животным. Ужесточились правила по регулированию инвазивных процедур, выполняемых на головоногих моллюсках в исследовательских лабораториях.
А спонсором требуемых доказательств является исследование от 2020 года опубликованное в журнале ISCIENCE, на котором и базируется весь мой текст [3]. Суть данного исследования заключается в том, что к объектам исследования, тобишь осьминогам применялась методика оценки аффективных аспектов боли, применяемая до этого практически только к позвоночным, в частности к млекопитающим.
Тест показал, что время, проведённое в предпочтительной камере, сильно различалось у группы которой вводили уксусную инъекцию, от плацебной группы, указывая на демонстрацию когнитивного и спонтанного поведения, свидетельствующего о переживании аффективной боли. Животные в «уксусе» возвращались в предпочтительную камеру лишь спустя очень большой промежуток времени.
Далее осьминогам в двух группах вводился препарат, который обеспечивает облегчение тонической боли у позвоночных выражающееся в соответствующем поведении. Поэтому, если тонической боли нет, то и соответствующего поведения облегчения от тонической боли быть не должно. Проверка облегчения боли, связанной с анальгетиком, считается убедительным доказательством наличия боли у позвоночных животных. Данный эксперимент показал, что осьминоги с предполагаемой индуцированной тонической болью получившие локализованную инъекцию лидокаина и помещённые в камеры, которые они избегали в первом тесте из-за боли, вновь получили предпочтение находиться именно в этих камерах, т.е. они перестали их избегать.
Более того данные из всех трёх экспериментов над осьминогами абсолютно доказали, что осьминоги испытывают состояние постоянной (тонической) боли, что ранее считалось возможным только у млекопитающих. Поэтому, по-моему, мнению принцип предосторожности с такими животными категорически необходим.
Данное исследование в полном объёме представляет собой первый пример вероятной продолжающейся боли у любого животного, не являющегося млекопитающим, что собственно заставляет с одной стороны задуматься, например, на сколько сильно, страдает живой рак, кипящий в котле, а с другой стороны радоваться, что реинкарнация существует только в буддизме. P.s. А вы варите раков живыми?
Автор: биолог, вдохновитель научного сообщества Фанерозой Ефимов Самир.
Бериллий в гифках
Взаимодействие бериллия с жидким хлором
Бериллий активно реагирует с соляной кислотой
Не так активно бериллий реагирует со щелочью, образуя комплексное соединение тетрагидроксобериллат натрия
Температура плавления бериллия 1287 °C, однако при попытке расплавить небольшой образец газовой горелкой он практически весь переходит в оксид
Плавление бериллия в промышленных условиях
Демонстрация диамагнитных свойств бериллиевой бронзы (сплава бериллия и меди). Также сплавы содержащие бериллий примечательны тем, что не создают искр
В природе бериллий основной компонент минерала берилла, благодаря которому элемент и получил своё название. Наиболее ценной разновидностью берилла является изумруд
Как сделать бесцветный огонь
Химия для смертных V 2.75
1) Растворение пенопласта
Название само за себя говорит. В любую тару, которую не очень жалко, наливаем пару сантиметров ацетона ( покупается в строительном ), отламываем кусок пенопласта, который пролезет в тару. Насаживаем пенопласт на шпажку, так удобнее, и потихоньку погружаем его в ацетон. Пузырясь, наш кусок пенопласта будет сильно уменьшаться в объёме, а мы получим не самую полезную жвачку для рук.
3) Буря в банке
Делаем вот такую длинную ложку из фольги. Если есть алюминиевая столовая ложка, которую не жалко, можно и её погнуть. Берём ненужную трёхлитровую банку с крышкой, наливаем на дно сантиметр аммиака и закрываем настояться ( можно потрясти немного ). В ложку насыпаем дихромата калия и нагреваем его над банкой. Как только он начнет стабильно разлагаться закрепляем ложку на краю банки и прикрываем крышкой. Любуемся красивым моментом.
Этот опыт засел у меня в памяти и сердце, несмотря на то что он у меня не очень то
получается. Это один из моих первых опытов. Есть ещё вариант со всыпанием с ложки раскаленного докрасна оксида хрома, но дома так делать не очень удобно. Крышкой это дело закрывается, чтобы оксид хрома не разлетелся в радиусе 5 километров, как
это обычно получается.
5) Несгораемый платок
Реактивы просты: водка и соль, на том список заканчивается. Если у вас в доме не оказалось водки, но нашёлся технический спирт, разведите его с водой 1 к 1. В наш водный раствор спирта добавьте щепотки три поваренной соли, это сделает огонь более заметным. Теперь, когда наш раствор готов, ищем платок, купюру, которую не жалко, ( для демонстрации 50 рублей у меня не нашлось ) или, как в моем случае, полоску бумаги. Окунаем нашего подопытного в раствор, избавляемся от излишков и поджигаем. Наша жертва немного погорит и сама потухнет. Если не потухнет, значит в растворе слишком много спирта и это дело как минимум обуглится. Если же спирта
слишком мало, то и поджечь ничего не выйдет.
Думаю мне следует напомнить, что огонь всё ещё горячий и им можно обжечься,
поэтому пользуемся щипцами или пинцетом, пальцы нам ещё потом пригодятся, обещаю.
Кстати, насчёт моих «точных» навесок. На самом деле, тут всё довольно просто: в опытах, которые я показываю, основными мерами измерения являются «щепотка», «пара капель», «немного» и «относительно много». В большинстве случаев я не использую растворы полностью, а лишь их часть ( тоже довольно произвольно ). Точные количества тут лишь усложняют подготовку. Это дело практики, понимать сколько этого порошка и того раствора мне понадобится для проведения опыта. Я лишь даю ориентировочные количества, чтобы вы для себя потом могли понять какие количества реактивов и объёмы будет удобно использовать именно вам.
Я нанёс йод на стенки стаканчика и перевернул его ( пары йода тяжёлые и идут сверху вниз ) на салфетку в надежде, что пары йода будут оседать на ней. Не-а, ему, как и он сам, фиолетово, он осядет на поверхности за салфеткой, пусть и испарится с нее через полчаса, всё равно неприятно.
Естественно, у некоторых может возникнуть логичный вопрос: «У меня в наборе для проведении опытов есть соляная кислота, зачем мне беспонтовый уксус?». Ну, во-первых, уксус дома есть у всех и его не жалко. Во-вторых, уксус в получении йодида натрия жизненно необходим для проведения «золотого дождя», так как хлорид и сульфат свинца в воде нерастворимы и запорят нам опыт. Если же вы собираетесь использовать йодид только в «египетской ночи», то кто я такой, чтобы ограничивать вас в выборе кислот?
Ну и по старой, доброй традиции держи котов в конце :3