найдите остальные углы на рис 13
Решение треугольников онлайн
С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.
Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:
Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.
Решение треугольника по трем сторонам
Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .
Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения
Пример 1. Известны стороны треугольника ABC: Найти
(Рис.1).
Решение. Из формул (1) и (2) находим:
И, наконец, находим угол C:
|
Решение треугольника по двум сторонам и углу между ними
Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.
Найдем сторону c используя теорему косинусов:
Далее из (3) с помощью калькулятора находим угол A.
Поскольку уже нам известны два угла то находим третий:
Пример 2. Известны две стороны треугольника ABC: и
(Рис.2). Найти сторону c и углы A и B.
Решение. Иcпользуя теорму косинусов найдем сторону c:
Из формулы (3) найдем cosA:
|
Поскольку уже нам известны два угла то находим третий:
Решение треугольника по стороне и любым двум углам
Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.
Так как, уже известны два угла, то можно найти третий:
Далее, для находждения сторон b и c воспользуемся тероемой синусов:
Пример 3. Известна одна сторона треугольника ABC: и углы
(Рис.3). Найти стороны b и c и угол С.
Решение. Поскольку известны два угла, то легко можно найти третий угол С:
Найдем сторону b. Из теоремы синусов имеем:
Найдем сторону с. Из теоремы синусов имеем:
Найдите остальные углы на рис. 13
Ответы
Вроде А, оно больше похоже на острый угол
1.треуго́льник (в евклидовом пространстве) — фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника.
2.квадрат — это прямоугольник, у которого все стороны равны. можно дать и другое определение квадрата: квадрат — это ромб, у которого все углы прямые. получается, что квадрат обладает всеми свойствами параллелограмма, прямоугольника и ромба.
12. Если это диаметры одной и той же окружности (а как известно диаметр проходит через центр) то они не могут быть параллельны.
13. ,
где x и y углы.
14. представим угол А за Х;
x + 5х + x + 40 = 180;
7x = 140;
x = 20 градусов.
соответственно угол А = 20; угол В = 60 градусов, а угол С = 100 градусов.
17. Треугольник АВС является равнобедренным. А у него углы у основания одинаковые. А так как углы CAD и BAC равны, то можно прийти к выводу что и стороны у этой фигуры равны. Но это не обязательно квадрат.
Найдите остальные углы на рис 13
Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 83°. Найдите величину угла OMK. Ответ дайте в градусах.
Угол, образованный хордой и касательной равен половине дуги, которую он заключает, поэтому величина дуги MK равна 2 · 83° = 166°. Угол MOK — центральный, поэтому он равен величине дуги, на которую опирается. Значит, угол MOK равен 166°. В треугольнике OMK стороны OK и OM равны как радиусы окружности, поэтому треугольник OMK — равнобедренный, следовательно, углы при основании равны. Сумма углов треугольника равна 180°, поэтому ∠OKM = ∠OMK = (180° − ∠KOM)/2 = (180° − 166°)/2 = 7°.
Приведём другое решение.
Найдём угол OKM: OKM = 90° − 83° = 7°. Треугольник OMK — равнобедренный, поэтому угол OMK равен углу OKM и равен 7°
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB = BC и ∠ABC = 177°. Найдите величину угла BOC. Ответ дайте в градусах.
Угол BOC — центральный, поэтому он равен величине дуги, на которую опирается. Углы BAC вписанный, он равен половине дуги, на которую он опирается. Поскольку эти углы опираются на одну и ту же дугу, ∠BOC = 2∠BAC. Сумма углов треугольника равна 180°. Треугольник ABC — равнобедренный, углы при его основании равны, поэтому Следовательно, угол BОC = 3°.
Внимательный читатель заметит, что угол В тупой, поэтому центр окружности лежит вне треугольника. Очевидно, что это не влияет на справедливость вышеприведенного решения — задачу можно решить и вовсе без рисунка. Поэтому мы не стали менять тот рисунок, который был дан авторами задания.
В окружность вписан равносторонний восьмиугольник. Найдите величину угла ABC.
Построим OA и OC радиусы. Центральный угол AOC равен 360°:8 = 45°. Угол ABC — вписанный и опирается на ту же дугу, поэтому он равен 45°:2 = 22,5°.
В угол величиной 70° вписана окружность, которая касается его сторон в точках A и B. На одной из дуг этой окружности выбрали точку C так, как показано на рисунке. Найдите величину угла ACB.
Угол ACB — вписанный, он равен половине дуги AB. Угол АОВ — центральный, опирающийся на ту же дугу. Проведём радиусы ОА и ОВ в точки касания. Сумма углов четырёхугольника AOBD равна 360°. Поэтому
Величина центрального угла AOD равна 110°. Найдите величину вписанного угла ACB. Ответ дайте в градусах.
Угол AOB смежный с углом AOD, поэтому AOB = 180° − 110° = 70°. Центральный угол AOB и вписанный угол ACB опираются на одну дугу. Поэтому
К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 12 см, AO = 13 см.
Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB. Из теоремы Пифагора:
Четырехугольник ABCD вписан в окружность. Угол ABC равен 70°, угол CAD равен 49°. Найдите угол ABD. Ответ дайте в градусах.
Угол ABC — вписанный, опирается на дугу ADC, поэтому величина дуги ADC равна 2 · 70° = 140°. Угол CAD — вписанный, опирается на дугу CD, поэтому величина дуги CD равна 2 · 49° = 98°. Угол ABD — вписанный, опирается на дугу AD, поэтому ∠ABD = ∪AD/2 = (∪ADC − ∪CD)/2 = (140° − 98°)/2 = 21°.
Приведем решение Марии Васильевны.
Но ∠DBC = ∠CAD, поскольку они опираются на одну и ту же дугу CD.
Тогда ∠ABD = ∠ABC − ∠CAD = 70° − 49° = 21°.
К окружности с центром в точке проведены касательная
и секущая
. Найдите радиус окружности, если
,
.
Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB: по теореме Пифагора равен 75.
К окружности с центром в точке проведены касательная
и секущая
. Найдите радиус окружности, если
,
.
Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB: по теореме Пифагора равен см.
К окружности с центром в точке проведены касательная
и секущая
. Найдите радиус окружности, если
,
Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB: по теореме Пифагора равен см.
В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 30°. Найдите величину угла OAB.
Вписанные углы ВСD и ВАD опираются на одну и ту же дугу окружности, поэтому они равны. Тем самым, угол OAB = 30°.
Точки A и B делят окружность на две дуги, длины которых относятся как 9:11. Найдите величину центрального угла, опирающегося на меньшую из дуг. Ответ дайте в градусах.
Дуги окружности относятся как 9:11, что в сумме дает 20 частей. Поэтому длина меньшей дуги составляет от всей окружности, тем самым, она равна
. Так как угол AOB — центральный, то он равен той дуге на которую он опирается. Таким образом,
.
Найдите величину (в градусах) вписанного угла α, опирающегося на хорду AB, равную радиусу окружности.
Проведем радиусы OA и OB. Так как по условию задачи хорда AB равна радиусу, то треугольник AOB — равносторонний, следовательно, все его углы равны 60°. Угол AOB — центральный и равен 60° Угол ACB — вписанный и опирается на ту же дугу, что и угол AOB. Таким образом,
В окружность вписан равносторонний восьмиугольник. Найдите величину угла ABC.
Угол ABC — вписанный и опирается на диаметр AC. Таким образом, ∠ABC = 90°.
Аналоги к заданию № 311503: 311507 Все
Точки A, B, C и D лежат на одной окружности так, что хорды AB и СD взаимно перпендикулярны, а ∠BDC = 25°. Найдите величину угла ACD.
Треугольник BOD — прямоугольный, сумма его острых углов равна 90°. Поэтому ∠ABD = ∠OBD = 90° − 25° = 65°. Углы ABD и ACD опираются на одну дугу, поэтому эти углы равны. Таким образом, ∠ACD = 65°.
В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°. Найдите величину угла ABC. Ответ дайте в градусах.
Углы ACB и BAC равны, т. к. находятся при основании равнобедренного треугольника; пусть один из них равен x. Поскольку сумма углов треугольника равна 180°, имеем: ∠ABC = 180° − x − x. Угол ACB смежен с углом 123°, значит, равен 180° − 123° = 57°. Следовательно, x = 57°, откуда ∠ABC = 180° − 2·57° = 66°.
Аналоги к заданию № 37: 311680 340586 Все
Точка О — центр окружности, ∠AOB = 84° (см. рисунок). Найдите величину угла ACB (в градусах).
Вписанный угол ACB равен половине центрального угла AOB, опирающегося на ту же дугу, поэтому он равен 42°.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 25° и 30°. Найдите больший угол параллелограмма.
Сумма односторонних углов параллелограмма равна 180°. Поэтому величина большего угла параллелограмма будет равна:
Около трапеции, один из углов которой равен 49°, описана окружность. Найдите остальные углы трапеции.
Запишите величины углов в ответ без пробелов в порядке неубывания.
Пусть углы трапеции равны
и угол
Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равна 180°:
откуда
Сумма смежных углов в трапеции равна 180°, следовательно,
Тем самым, три неизвестных угла равны 49°, 131° и 131°.