Что такое числовой ребус
Статья «Решение числовых ребусов»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Миллионы людей во всех частях света любят разгадывать ребусы. И это не удивительно. “Гимнастика ума” полезна в любом возрасте. Ведь ребусы тренируют память, обостряют сообразительность, вырабатывают настойчивость, способность логически мыслить, анализировать и сопоставлять.
Вся наша жизнь – беспрерывная цепь игровых ситуаций. Они бывают, значительны, а бывают, пустячны, но и те, и другие требуют от нас принятия решений. Еще в Древней Элладе без игр не мыслилось гармоническое развитие личности. И игры древних не были только спортивными. Наши предки знали шахматы и шашки, не чужды им были ребусы и загадки. Таких игр во все времена не чуждались ученые, мыслители, педагоги. Они и создавали их. С древних времен известны головоломки Пифагора и Архимеда, русского флотоводца С.О. Макарова и американца С. Лойда.
Существует такая разновидность ребусов, которые называются числовыми. Они представляют из себя выражения, требующие арифметического решения, составленные в виде математических равенств, где числа заменяются другими знаками – буквами, фигурками геометрии, звездочками и т.д.
Под числовыми ребусами подразумевают те задачки, в которых необходимо использовать логические рассуждения. Именно они являются способом решения и расшифровывания каждого символа, который ведет к восстановлению числовой записи.
Числовым ребусам уже почти тысяча лет. Впервые они появились в Китае, затем в Индии. В европейских странах числовые ребусы поначалу называли крипт-арифметические задачи. Их появление в Европе впервые было отмечено только в двадцатом веке, несмотря на то, что развитие математики началось много столетий назад.
При составлении ребусов числового типа пользуются следующими правилами. Все использующиеся цифры заменяют буквами. При наличии в задаче одинаковых цифр, соответственно, используется такое же количество букв. Промежуточные стадии математических операций обозначаются звездочками. Различают на основе этих правил несколько типов ребусов. Первый – это ребусы, в которых заменены на цифры все имеющиеся буквы. При этом зашифровывается какое-либо выражение, которое обозначает житейские ситуации в оригинальном изложении.
Числовые ребусы являются очень сложными, порой попадаются такие, которые требуют поэтапного длительного решения. Числовые ребусы являются увлекательными математическими задачами, которые сильно развивают логику и сообразительность.
Числовые ребусы могут быть составлены из нескольких рядов символов, а между ними ставится определенное количество математических знаков, которые являются указателями для того, какие действия необходимо произвести по вертикали, а какие по горизонтали.
1) ТА+ ИТ = ЛЕТ 2) КРА + ОЛИ = ИАЯ
ЕС х СН = ЛЛАС Л х АР= КЯИ
ЛЕАА + ЕЦ = ЛЕЕЦ ОИИ + АЛ = РКА
Числовые ребусы являются очень популярными не только в школах на обычных уроках, но и на математических олимпиадах. решить числовые ребусы можно с помощью компьютерных программ, однако ни с чем несравнимое удовольствие может получить человек, который самостоятельно ломает голову над разгадкой и в конце концов ее находит.
Задачи, представленные в занимательной форме, очень интересны. Их хочется решать, они увлекают своей необычностью, неочевидностью ответа. Появляется желание совершить пусть даже нелёгкий путь поиска решения. Занимательность и строгость вполне совместимы. Каждое самостоятельно решенное задание – это возможно, небольшая, но всё же победа.
В буквенных ребусах каждой буквой зашифрована одна определенная цифра: одинаковые цифры шифруются одной и той же буквой, а разным цифрам соответствуют различные буквы.
В ребусах зашифрованных, например, звездочками, каждый символ может обозначать любую цифру от 0 до 9. Причём, некоторые цифры могут повторяться несколько раз, а другие не использоваться вовсе.
Перед началом решения математического буквенного ребуса (например, криптарифма), убедитесь, что в нём использовано не более 10 различных букв. В противном случае, такой ребус не будет иметь решений.
Начните решение ребуса с правила, согласно которому ноль не может быть крайней левой цифрой в числе. Таким образом, все буквы и знаки, с которых начинается число в ребусе, уже не могут обозначать ноль. Круг поиска нужных цифр сузится.
В ходе решения отталкивайтесь от основных математических правил. Например, умножение на ноль всегда дает ноль, а при умножении любого числа на единицу, мы получим в результате исходное число.
Очень часто математические ребусы представляют собой примеры сложения двух чисел. Если при сложении сумма имеет больше знаков нежели слагаемые, значит сумма начинается с «1»
Обращайте внимание на последовательность арифметических действий. Если числовой ребус состоит из нескольких рядов знаков, он может решаться как по вертикали, так и по горизонтали.
Не бойтесь совершать ошибки. Возможно, они подскажут вам верный ход решения. Не пренебрегайте методом перебора. Некоторые ребусы потребуют длительного поэтапного решения, но в итоге вы будете вознаграждены верным ответом и отличной разминкой для вашей сообразительности.
Прежде чем приступить к разгадыванию сложных задач, потренируйтесь на простом примере: ВАГОН+ВАГОН=СОСТАВ. Запишите его в столбик, так будет удобнее решать. Вы имеете два неизвестных пятизначных числа, сумма которых шестизначное число, значит В+В больше 10-ти и С равно 1. Замените символы С на 1.
Сумма А+А – однозначное или двухзначное число с единицей на конце, это возможно в том случае, если сумма Г+Г больше 10 и А равно либо 0, либо 5. Попробуйте предположить, что А равно 0, тогда О равно 5-ти, что не удовлетворяет условиям задачи, т.к. в этом случае В+В=2В не может равняться 15-ти. Следовательно, А=5. Замените все символы А на 5.
Сумма О+О=2О – четное число, может быть равна 5 или 15 лишь в том случае, если сумма Н+Н – двухзначное число, т.е. Н больше 6-ти. Если О+О=5, то О=2. Это решение неверно, т.к. В+В=2В+1, т.е. О должно быть число нечетное. Значит, О равно 7-ми. Замените все О на 7.
Легко заметить, что В равно 8-ми, тогда Н=9. Замените все буквы на найденные числовые значения.
Замените в примере оставшиеся буквы на числа: Г=6 и Т=3. Вы получили верное равенство: 85679+85679=171358. Ребус отгадан.
Математические ребусы
На ЛогикЛайк 3500 логических заданий для детей на каждый день: числовые и арифметические ребусы, математические загадки, головоломки, более 17 категорий.
Чем отличаются математические ребусы
Пример простого ребуса про цифры
Какое число зашифровано?
В обычных ребусах слова изображают картинками, буквы часто заменяют взаимным расположением объектов, запятыми обозначают вычитаемые из слов буквы.
Чтобы научиться разгадывать ребусы с буквами и цифрами, достаточно понять основные правила и немного потренироваться.
Лучшие ребусы на логику
Математический ребус – это занимательная шифровка с картинками и цифрами на выполнение арифметических действий (сложение, вычитание, деление и умножение).
Чтобы выполнять задания, начните занятия онлайн!
Популярные варианты головоломки — неполные примеры, неравенства, таблицы, в которых все или часть цифр заменили буквами, изображениями, звездочками или пропусками.
Чтобы решать задачи на логику, нажмите «Начать занятия»!
Какие еще ребусы и головоломки можно решать на ЛогикЛайк?
3500+ интерактивных вопросов и головоломок
Занятия в игровой форме приносят пользу и удовольствие! Ребёнок развивает логику и мышление играючи.
Над заданиями для детей 1-4 классов работают квалифицированные педагоги, методисты.
Как решать математические ребусы?
Одинаковые картинки или буквы скрывают одинаковые цифры. Несколько изображений или букв подряд обозначают, что перед тобой не цифра, а двух- или трехзначное число.
Чтобы определить все неизвестные цифры и числа, пробуй разные арифметические действия. Пользуйся способом подбора и помни, что иногда может быть несколько вариантов правильного ответа.
Арифметические ребусы
Даже простые ребусы на сложение и вычитание — отличная тренировка на логику и скорость мышления.
Как решать математические ребусы
В разряде единиц отметим сразу отсутствие переноса («0»). |
М=1, поскольку сумма двух слагаемых всегда начинается с 1 если знаков суммы (5) больше чем знаков слагаемых (по 4). Также отмечаем перенос 1 из разряда тысяч (S+M=O) в разряд десятков тысяч (M). |
В разряде тысяч S+1(М)=O, причём эта сумма больше 9 т.к. даёт перенос (1 «в уме») в разряд десятков тысяч благодаря которому М=1. В данном случае единственным возможным значением для О=0, поскольку перенос 1 из разряда тысяч в разряд десятков тысяч возможет при S=9 либо S=8 и перенос 1 с разряда сотен. (При S=9 и переносе 1 из разряда сотен О=1, что не допустимо т.к. «1» уже занята «М»). |
Мы выяснили, что S=9 либо S=8 и перенос 1 с разряда сотен (E+O=N > 9). Предположим, что S=8, в таком случае в разряде тысяч получаем: 1(перенос из разряда сотен) + 8(S) + 1(M) = 0(O) + перенос 1 в разряд десятков тысяч. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Поскольку S не может равняться 8, получаем S=9. Переноса из разряда сотен (E+O=N) нет, поскольку в таком случае в разряде тысяч получим: 1(перенос из разряда сотен)+9(S)+1(М)=1+1 перенос в рязряд десятков тысяч. Т.е. получичли О=1, что не верно т.к. ранее мы выяснили, что М=1. |
Рассмотрим разряд сотен: E+0(О)=N. Очевидно, что это возможно, если «1» переносится из разряда десятков. Причём сама сумма E+0=N меньше 10 т.к. ранее мы выяснили, что переноса в разряд тысяч нет. |
В разряде сотен получаем: 1(перенос из разряда десятков)+Е+0(О)=N. Поскольку ранее мы выяснили, что N 2 (т.к. Е>1). Предположим, что N=3 и соответственно Е=2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Если мы посмотрим на разряд единиц (D+E=Y), то очевидно, что он не даёт переноса в разряд десятков, т.к. максимально возможное значение D=6 (7+2=9-занята, 8+2-10-ноль занят, 9 занята). В разряде десятков получаем R=9, что не верно, т.к. «9» занята |
Вернёмся назад и теперь предположим, что N=4 и соответственно Е=3 |
Если мы посмотрим на разряд десятков (N+R=E), то единственное возможное значения для R=8 и перенос из разряда единиц |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вернёмся назад и теперь предположим, что N=5 и соответственно Е=4 |
Если мы посмотрим на разряд десятков (N+R=E), то единственное возможное значения для R=8 и перенос из разряда единиц |
|
Вернёмся назад и теперь предположим, что N=6 и соответственно Е=5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Если мы посмотрим на разряд десятков (N+R=E), то единственное возможное значения для R=8 и наличие переноса из разряда единиц |
В разряде единиц получаем: D=7, Y=2 Решение найдено: 9567+1085=10652. Данный математический ребус имеет единственное решение. Впрочем, имеется возможность повторить всё самостоятельно, без подсказок ► Наверх
|